
P4 4.0 Technical Description

Company: Flippin Engineering
Contact: http://www.lighthousepubl.com/Flippin_Engineering.htm

Author: Curtis G. Flippin
Date: 27 October 2009

Abstract

P4 version 4.0 is a formal linear procedural grammar for a simple, powerful,

clear, and concise structured English Pseudo-code. P4’s unique balance of

structure and flexibility makes it a perfect modeling tool for Engineers, Analysts

and Developers.

1 Introduction

P4 was created in 2001 out of necessity. I needed a clear, concise structured
English pseudo-code that would be reasonably easy for any developer to
understand and reasonably easy for any analyst to use. I soon found that
there was very little to choose from and they were all simply style suggestions
with no lexical or syntactic tools to promote consistency.

I designed P4 and used it for several months while I designed a program to
parse P4 documents. The parser program became a full implementation of
Extended Backus-Naur Form[2].

It has been my habit to redesign P4 with each new release of the Extended
BNF meta-language application. Having just completed EBNF 4.0, I began
work on the new P4. P4 4.0 is now much more flexible and easier to use
than was version 3.5. Version 4.0 is more in tune with my original objectives
of a simple, clear, concise and user friendly process modeling tool.

The new EBNF 4.0 can now parse and compile text files having 50,000 lines.
That’s about 600 pages of text! P4 is an EBNF 4.0 application and so it
inherits this capability. New in this P4 version is a “line tracker” error de-
tection function that can usually tell you exactly which line of your text
file contains an error or, at the very least, which P4 statement is causing
the problem. Gone are the arithmetic and logical constructs. Instead, sim-
ple English phrases can be used. The new define: construct replaces the
cumbersome data object and structures syntax.

1



Unlike most generalized pseudo-code, P4 is a defined, structured grammar
with an error checking parser to ensure consistency. This is a difficult task
for what appears to be a loosely bound format and syntax, but it can be
done.

2 P4 Level 1 Structure

The P4 grammar was specified using EBNF 4.0[1] which is a FORTH[3] ap-
plication that implements the Extended Backus-Naur Form Metalanguage
Standard[2]. EBNF 4.0 serves a dual purpose. Firstly, it provides a stan-
dard specification for the P4 grammar. Secondly, it can be compiled into
Forth code without any intervening steps. In other words, the EBNF 4.0
specification is the grammar parser code.

The EBNF production below defines P4 at the highest level (Level 1). Note
that P4 contains six alternate sequences separated by a vertical bar ’|’.
These are read as logical ’OR’ statements so that P4 is an “eos” OR an
<end> OR a <p4-comment> OR a <p4-note>, etc. statement. Also note
that for the last five alternative sequences, P4 is recursive. That is, P4 calls
itself.

\ Outermost Syntactic Level

bnf= <p4>

"eos"

| <end>

| <p4-comment> <p4>

| <p4-note> <p4>

| <blank-line> <p4>

| <begin> <p4-module> <p4>

| <p4-module> <p4>

;bnf

The production specifies that P4, at Level 1, will accept one or more com-
ments, notes, blank lines, begin module blocks, or modules until it encoun-
ters either the “eos” (end of source file) or a Level 1 end: statement.

2.1 Ending a P4 Document

P4 source files are text files (*.txt). Your text file editor should be set up
to display line numbers (1..n) and tabs should be converted to three spaces.

2



Other than a ’carriage return/line feed’ end of text line sequence, there
should be no embedded control characters in the source file.

If, at Level 1, the end of the source file is detected or an ’end’ command is
encountered, the document is considered ended. Even an empty source file
will be considered legal and will end without error1. An ’end’ command is
simply:
end:
on a line by itself.

2.2 Comments and Notes

Comments and notes take the forms as shown below. Notes are really tech-
nical notes and side comments. I borrowed this concept from the Extended
BNF Standard. Both comments and notes can be multi-line. The delimiters
must be isolated by at least one space character.

(* This is a single line p4 comment *)

(* One suggested form for multi-line comments is to begin

the comment as though it were a single line comment

but place the closing delimiter on a line by itself.

*)

(*

The other suggested form is to place the opening and

closing delimiters on lines by themselves.

*)

?? Technical Notes obey the same rules as Comments except

the opening and closing delimiters are the same

double question mark sequence.

??

Blank Lines are a special necessity and they do not refer to text lines having
all space characters. P4 will recognize a line of spaces as normal text. It
is possible, however, to create a text line with no characters other than the
end-of-line carriage return/line feed sequence. These empty blank lines are
included in the lexical analysis by virtue of the <blank-line> production.

1 Actually, EBNF will issue an empty file error and abort the process

3



2.3 Optional Code Modules

The P4 grammar attempts to strike a delicate balance between structure and
flexibility. A linear procedural grammar must have enforceable rules that
form the foundation for structure. A generalized pseudo-code must allow
the writer the freedom to describe processes in the most appropriate form.
A fundamental tenant of process design is that it is often advantageous to
break complex processes (or problems, if you like) into smaller segments.

(* File Input/Output Processing *)

begin: File I/O Module;

(* Include all file processing in this module *)

end: File i/o;

P4 provides this capability in the form of modules. Modules are just like any
other P4 code except a module is framed with a begin: and end: statement
as shown above.

3 P4 Level 2 Module Structure

The EBNF 4.0 production for a P4 module is shown below. Modules are
simply Level 2 code and can be defined as structured or unstructured de-
pending on whether the module is defined as a begin-end code segment.

bnf= <p4-module>

"eos"

| <end>

| <p4-comment> <p4-module>

| <p4-note> <p4-module>

| <define> <p4-module>

| <function> <p4-module>

| <procedure> <p4-module>

| <p4-do> <p4-module>

| <blank-line> <p4-module>

;bnf

Four new statements are available in Level 2:

4



1. Define
Narrative data object and structure descriptions

2. Function
Define a function, its arguments and processes

3. Procedure
Define a procedure and its processes

4. Do
Narrative process description

All Level 2 statements are recursive except for “eos” and <end> but an end:

statement is required to end a module even if it is unstructured (i.e. did not
start with begin:).

3.1 Defining Data Objects

There are no formal data object declaration statements. Labeled data is
handled in the form:

define: temp1 as temporary variable;

define: pi as constant = 3.14;

define: customer_table as customer data tables;

The format is simply the keyword define: followed by a label for the data
and a description of the data. A semi-colon signals the end of the statement.

Labels are required for data, functions and procedures. P4 does not perform
any label usage checks. It does, however, perform some syntax checks on
labels.

• A label may not contain embedded space characters. Underscore char-
acters can be used in place of spaces.

• A label may not contain the characters or character sequences “(”,
“)”, “??”, “:”, or “;”.

P4 text also has some restrictions and they are slightly different from those
for labels. P4 text is used frequently such as the remainder of a define:

statement following the label.

• P4 text may be multi-line but must end with a semi-colon.

• P4 text may not contain the characters or character sequences “(*”,
“*)”, “??”, “:”, or “;”.

5



3.2 Functions

Functions are treated much like procedures. Unlike procedures, however,
functions have an argument list. A function is used simply by typing the
function name and argument list whereas using a procedure requires a call:

statement. The body of a function is identical to the body of a procedure.
That is, any statement permitted within a procedure is also allowed within
a function.

(*

P4 Function, Procedure and If Examples

*)

begin: If Statement Test Module;

define: answer as ascii character key buffer;

function: getkey(key);

do: wait for key-pressed and return character in key;

end:

procedure: ask;

do: type "Do you want to continue? [y/n]";

getkey(answer)

(* convert answer to uppercase *)

do: answer AND 65;

if: answer = ’Y’;

do: continue process;

elseif: answer = ’N’;

do: terminate process;

else:

do: invalid answer;

endif:

end: ask;

end: If Statement Test;

If you read through the above example you will see that the code is defined
as a module (begin:). The variable answer is defined as a character buffer.
Below that, the function getkey is defined. Note that it has only one argu-
ment, key. If additional arguments were needed they would be separated by

6



commas. Also note that the arguments do not need to be defined. For that
matter, the variable answer doesn’t need to be defined either. Doing so is
only necessary to make the code clear and understandable.

The procedure ask uses function getkey to obtain the users answer to a
question. The function call is one of the few times when a semi-colon is not
required afterward. There is quite a bit of low level detail in this example
but it could easily have been described at a much higher level.

3.3 Procedures

Procedures are declared using the procedure: keyword followed by the name
of the procedure and an end of line semi-colon. As with functions, the
procedure definition ends with an end: command which can be followed by
the procedure name if you wish.

The body of a procedure is exactly the same as the body of a function. The
EBNF definition of a function uses the <procedure-body> production just like
the definition of procedure.

bnf= <procedure-body>

<p4-comment> <procedure-body>

| <p4-note> <procedure-body>

| <define> <procedure-body>

| <function-call> <procedure-body>

| <procedure-call> <procedure-body>

| <p4-do> <procedure-body>

| <blank-line> <procedure-body>

| <if> <procedure-body>

| <while> <procedure-body>

| <until> <procedure-body>

| <case> <procedure-body>

| <end>

;bnf

Procedures and functions may contain multiple occurrences of comments and
notes, data definitions, function and procedure calls, do statements, blank
lines, and a selection of conditional control structures. The end: statement
signals the end of a procedure or function definition.

7



3.4 The Do Statement

The do: statement is essentially a predicate form of comment. Whereas
comments and technical notes inform, the do statement is action oriented.
The statement keyword is do: followed by P4 text 2 and an end of line
semi-colon. The statement may span several lines.

4 P4 Level 3 Conditional Control Structures

The selection of control structures was quite deliberate. The list may appear
to some to be lacking in that there are only four control structures.

1. if:...elseif:...else:...endif:

2. while:...repeat:

3. until:...repeat

4. case:...when:...other:...endcase:

Each control structures’ form and format was carefully designed to be rec-
ognizable and to permit the writers’ intent to be clear, concise and obvious.
I assumed that writers using the P4 format would strive for clarity over
cleverness. P4 allows one a great deal of freedom when creating a proce-
dural description. Consequently, the writer also has the freedom to create
nonsense as long as it is structured properly.

The objective of conditional control structures is to specify what action or
actions should be taken depending on whether certain conditions have or
have not been met. Decisions are based upon a set of one or more condi-
tions. Naturally, all of the controls are only permitted within the bodies of
functions or procedures. Each is detailed in the following subsections.

4.1 The If Conditional Statement

The if: statement is a structured way of telling the reader what to do
depending on a set of conditions. In its simplest form it says:

2See Section 3.1 for P4 text restrictions

8



if: a set of one or more conditions is met;

do: take appropriate action;

endif:

In order to accommodate the either or situation where one set of actions is
needed if a set of conditions is met and another set of actions is needed if
those conditions are not met, we have this form:

if: a set of conditions is met;

do: take one set of actions;

else:

do: otherwise, take another set of actions;

endif:

Multiple sets of conditions can be handled with this form:

if: temperature is higher than maximum limit;

do: start compressor-on cycle;

elseif: temperature is lower than minimum limit;

do: stop compressor-on cycle;

else:

do: reset temperature test-cycle timer;

endif:

You can use as many elseif: statements as you need but only one else:

statement is allowed and it must follow the last elseif: of the if: statement.
The else: statement always means that none of the previous conditions, no
matter how many in a given if: statement, have been met.

Those of us who deal with real world systems and processes know how
annoyingly untidy the real world can be. A robust form of if: statement
is needed to express those conditions. P4 imposes no limit on if: nesting
levels. The if:, while:, and until: control structures share the same EBNF
body production.

9



bnf= <control-body>

<p4-comment>

| <p4-note>

| <function-call>

| <procedure-call>

| <p4-do>

| <blank-line>

| <if>

| <while>

| <until>

| <case>

;bnf

Any or all of the above are permitted within an if:...endif: control structure.
The following section provides a more complete example of a simple process
control monitor. It is not so much a design as a talking paper to use when
gathering more detailed requirements.

4.1.1 Process Control Monitor Example

(* P4 Simple Process Control Monitor Example

Curtis G. Flippin

27 October 2009

P4 Pseudocode (c)2001-2009 *)

(*

System physical plant consists of one or more production units.

A production unit accepts two reagents that are mixed in a

specific proportion in a reactor vessel under a specified

production standard temperature and pressure, PSTP.

The reagents react to form a new chemical that is output

from the reactor vessel.

The process is continuous.

*)

define: system as g(lambda) chemical production unit;

(* System Identification

Significant a priori knowledge of the system has been modeled

and incorporated via a set of nominal and optimum operating

parameters for each of the following production factors. *)

define: r1_r2 as input reagents proportions in GPM;

define: c1_r3 as production output quality characteristic one;

define: c2_r3 as production output quality characteristic two;

define: f_rate as production output flow rate in GPM;

define: pstp as production standard temperature and pressure;

define: a_spd as vessel mix agitator speed;

10



(* System Dynamics

The chemical reaction process combines two reagents, r1 and r2,

in unequal proportion, r1_r2, to produce a product, r3, with

the desired qualities, c1_r3 and c2_r3, in a quantity defined

as the flow rate, f_rate. The process is non-linear.

Production process controls consist of the following reactor

vessel controls.

*)

define: ctl_temperature as reactor temperator control;

define: ctl_pressure as reactor pressure control;

define: ctl_speed as reactor agitator speed;

(* System Performance

The objectives of the Process Control Monitor are to aid

human operators in controlling the reaction process and to

log system performance in a manner that will allow

consolidation with reaction control process logs for

later use as a learning tool for an adaptive control

system model. Performance is tracked as an index that is

a function of all the variable parameters plus the

control deltas over a defined ideal sampling rate.

*)

define: ip as performance index which is a function of

(r1_r2,c1_r3,c2_r3,f_rate,pstp,a_spd,

delta[temperature,pressure,speed]);

define: d_ip as delta(ip) memory;

function: delta_ip(c1,c2,f,t,p,d_ip);

(* Calculate delta(ip) from production factor arguments

and return in d_ip.

input arguments

c1 quality characteristic 1

c2 quality characteristic 2

f product flow rate

t reactor temperature

p reactor pressure

output arguments

d_ip delta of latest ip to new calculated ip.

d_ip is retained data that is used by this function

and elsewhere to determine the modification direction

information that is sent to the operator.

*)

end: delta_ip;

(* System Analysis

Operators perform the process analysis in response to data

they receive from the process control monitor. The monitor

does not determine corrective actions. It tracks performance, ip,

11



and compares the ip to both optimal and nominal performance

standards. Operator notices are transmitted to the operator

indicating the current level of system performance. There are

three levels of notices, optimal ip, nominal ip, and sub-nominal

ip. Notices include all system parameters and are logged along

with a timestamp.

*)

define: ip_optimum as optimum performance notice;

define: ip_nominal as nominal performance notice;

define: ip_subnominal as sub-nominal performance notice;

procedure: delay;

(* This procedure is a stand-in for the sampling rate

control process. An ideal rate will help to create

parameter delta’s that are well above ambient noise.

*)

end: delay;

procedure: monitor;

do: load initial known production parameters;

(* Monitor runs until the shutdown process orders

monitoring to stop.

*)

until: stop-order received from shutdown;

do: read sensors r1_r2, c1_r3, c2_r3, f_rate, a_spd,

temperature, pressure;

(* Mathematical function f(ip) is not yet defined *)

do: calculate ip performance index;

do: calculate delta_ip(,,,,,d_ip);

if: ip is outside optimum performance limits;

if: ip is outside nominal performance limits;

do: test ctl_temperature, ctl_pressure,

ctl_speed for sub-nominal readings;

if: any are sub-nominal;

?? we may want to track time between

sub-nominal alarms in order to

elevate the alarm level for

persistent performance problems.

??

do: set alarm status for sub-nominal

controls;

endif:

do: send ip_subnominal performance notice;

else:

do: send ip_nominal performance notice;

endif:

else:

12



do: send ip_optimum performance notice;

endif:

call: delay to maintain an ideal 1 cps sample rate;

repeat:

end: monitor;

end: Process Control Monitor

4.2 The While and Until Statements

The while: and until: keywords are conditional repeated process control
statements that both end with the repeat: keyword. Basically, these state-
ments are used as follows:

while: a set of one or more conditions has been met;

do: perform some appropriate process;

repeat:

until: a set of one or more conditions is met;

do: perform some appropriate process;

repeat:

The conditions at the top of the loop are retested with each iteration when
repeat: sends the process back to the beginning. 3

Any of the <control-body> options listed for if: statements are allowed
within while: and until: statements. These are the only loop control struc-
tures in P4. I have chosen to omit ’do loops’, ’for next loops’ and the like
because they have no place in pseudo-code. P4 does not define any data
objects or structures, either. It only allows labels and an explanation of
what they are and how they may be used. P4 is structured English and
should not be confused with programming languages.

4.3 The Case Statement

P4 has always included a case: statement. I rarely use it myself but it can
be useful in the right circumstances. Here’s an example of how it’s used.

3See example of until:..repeat: in section 4.1.1

13



(* P4 Case Statement *)

procedure: example;

case: read value of temperature sensor;

when: temperature is above normal;

do: modify temperature downward;

call: log to record event;

when: temperature is below normal;

do: modify temperature upward;

call: log to record event;

other:

call: reset to clear previous alarms;

call: log to record event;

endcase:

end: example;

Keep in mind that this is a very simple form of ’case’ statement. The state-
ment tells us that we’re going to test something having discrete properties
or values and take some action depending on a list of possible cases. In the
example, we have the case of a temperature read from a sensor. When the
temperature is above normal, we want to take some action and when it is
below normal, we want to take other actions. For all other cases not specif-
ically covered by previous when: statements, we want to take another set of
actions. The other: catch all is optional but at least one when: statement
should be used. Inside a case: statement you may use any of the statements
listed here.

14



bnf= <case-list>

<p4-comment>

| <p4-note>

| <function-call>

| <procedure-call>

| <p4-do>

| <blank-line>

;bnf

bnf= <case-body>

<case-list> <case-body>

| <case-list>

;bnf

As you can see, multiple comments, notes, function and procedure calls, do
statements, and blank lines are permitted. But no nested case: statements
and no if:, while:, or until: statements are allowed. Hopefully, the limitations
will promote clarity.

15



References

[1] Curtis G. Flippin,
Flippin Engineering,
Flippin Web
Extended BNF 4.0,
Released 14 July 2009.

[2] International Organization for Standardization and
International Electrotechnical Commission
Joint Technical Committee 1,
ISO/IEC 14977:1996(E),
The Standard Metalanguage Extended BNF,
Publ. 1996.

[3] Win32Forth Project Group,
www.win32forth.org/
Win32Forth Version 6.12.00,
Released 14 July 1997.

16

http://www.lighthousepubl.com/Flippin_Engineering.htm
http://www.win32forth.org/

	Introduction
	P4 Level 1 Structure
	Ending a P4 Document
	Comments and Notes
	Optional Code Modules

	P4 Level 2 Module Structure
	Defining Data Objects
	Functions
	Procedures
	The Do Statement

	P4 Level 3 Conditional Control Structures
	The If Conditional Statement
	Process Control Monitor Example

	The While and Until Statements
	The Case Statement


